QC検定ナビ

QC検定(品質管理検定)の問題、関連知識、試験情報を配信します。

QC検定2級模擬試験③ 問2

 

 確率分布に関する次の文章において、   内に入るもっとも適切なものを下欄の選択肢からひとつ選べ。ただし、各選択肢を複数回用いることはない。なお、解答にあたって必要であれば付表を用いよ。

 部品Aを部品Bのくぼんだ部分の左に組み付ける。その場合に生じるクリアランス(すき間)を検討するために、部品AおよびBの寸法データを数多く収集した結果、下表のデータが得られた。ただし、xとyは互いに独立に正規分布に従うと仮定してよい。

  平均 標準偏差
寸法x 30.0 1.5
寸法y 32.0 0.8
  1. クリアランス(すき間)の寸法Zは、Z = y - x と表される。したがって、寸法Zの平均および標準偏差は次の式で計算できる。
     寸法Zの平均 =  (1)  - 30.0 =  (2) 
     寸法Zの標準偏差 =  (3) 
     (1)  (3) の選択肢
    1. 30.0
    2. 32.0
    3. 2.0
    4. 1.5
    5. 0.8
    6. 1.52
    7. 0.82
    8. 1.7
    9. 2.3

     

  2. 部品Bに部品Aを組み込みができないという不具合が発生する確率、つまり寸法Zがマイナスになる確率を計算すると、 (4) となる。
     (4) の選択肢
    1. 0.023
    2. 0.119
    3. 0.192
    4. 0.500
    5. 0.808
    6. 0.881
    7. 0.997

 

解答

(1) (2) (3) (4)

解説

 XXX

(1)

 XXX

(2)

 XXX

(3)

 XXX

(4)

 XXX